Respuesta :

hello : 
the nth term is : an= a1×q^(n-1)....... a1 = 8  and q = -3

an= 8×(-3)^(n-1)



A geometric sequence is characterized by its common ratio. The formula to calculate the nth term of the given sequence is: [tex]-\frac{8}{3}\times (-3)^n[/tex]

The given parameters are:

[tex]r = -3[/tex] --- the common ratio

[tex]a =8[/tex] --- the first term

The nth term of a geometric sequence is:

[tex]T_n=ar^{n-1}[/tex]

So, we have:

[tex]T_n=8 \times (-3)^{n-1}[/tex]

Apply law of indices

[tex]T_n=8 \times \frac{-3^n}{-3}[/tex]

Rewrite as:

[tex]T_n=\frac{8}{-3}\times (-3)^n[/tex]

[tex]T_n=-\frac{8}{3} \times (-3)^n[/tex]

So, the nth term of the series is: [tex]-\frac{8}{3} \times (-3)^n[/tex]

Read more about geometric sequence at:

https://brainly.com/question/14320920

Q&A Education