Respuesta :

The surface [tex]S[/tex] can be parameterized in cylindrical coordinates using

[tex]\mathbf r(u,v)=(x(u,v),y(u,v),z(u,v))=(u\cos v,u\sin v,u)[/tex]

where [tex]4\le u\le5[/tex] and [tex]0\le v\le2\pi[/tex]. The surface integral is then equivalent to

[tex]\displaystyle\iint_Sx^2z^2\,\mathrm dS=\int_{v=0}^{v=2\pi}\int_{u=4}^{u=5}(u\cos v)^2u^2\left\|\mathbf r_u\times\mathbf r_v\right\|\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\sqrt2\int_{v=0}^{v=2\pi}\int_{u=4}^{u=5}u^5\cos^2v\,\mathrm du\,\mathrm dv[/tex]
[tex]=\dfrac{3843\pi}{\sqrt2}[/tex]

The value of the given surface integral is 3843[tex]\pi[/tex]/[tex]\sqrt{2}[/tex] and this can be determined by doing the integration.

Given :

S is the part of the cone z2 = x2 + y2 that lies between the planes z = 4 and z = 5.

First, parameterize S as given below:

[tex]\rm r(u,v) = (x(u,v) ,y(u,v),z(u,v))=(ucos\;v,usin\;v,u)[/tex]

In the above expression the value of [tex]\rm 4\leq u\leq 5[/tex] and [tex]\rm 0\leq v\leq 2\pi[/tex].

Now, evaluate the surface integral as given below:

[tex]\rm \int\int_S x^2z^2dS=\int\limits^{2\pi}_0\int\limits^5_4 {(ucosv)^2u^2} ||r_u\times r_v||\, du\;dv[/tex]

[tex]\rm \int\int_S x^2z^2dS=\sqrt{2} \int\limits^{2\pi}_0\int\limits^5_4 {(u^5cos^2v)} \, du\;dv[/tex]

Simplify the above integration in order to get the value of the surface integral.

[tex]\rm \int\int_S x^2z^2dS=\dfrac{3843\pi}{\sqrt{2} }[/tex]

For more information, refer to the link given below:

https://brainly.com/question/14502499

Q&A Education