Respuesta :

irspow
The rule for exponents of exponents is:

a^b^c=a^(b*c), in this case:

x^(3/8)^(2/3)

x^((3/8)*(2/3))

x^(6/24)

x^(1/4)

So x^(1/4) is equal to the fourth root.

Answer:

Fourth root.

Step-by-step explanation:

The given expression is :[tex](x^{\frac{3}{8} })^{\frac{2}{3} }[/tex]

The power rule for exponents states that powers are multiplied

[tex](a^{m})^{n} =a^{mn}[/tex]

Applying the rule we have:

[tex](a^{\frac{3}{8} }) ^{\frac{2}{3} } =a^{\frac{3}{8} .\frac{2}{3} } =a^{\frac{1}{4} }[/tex]

So the x root of the expression will represent the fourth root.

Q&A Education