Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^e_1 {\frac{8}{x}} \, dx = 8[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^e_1 {\frac{8}{x}} \, dx[/tex]

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int\limits^e_1 {\frac{8}{x}} \, dx = 8\int\limits^e_1 {\frac{1}{x}} \, dx[/tex]
  2. [Integral] Logarithmic Integration:                                                               [tex]\displaystyle \int\limits^e_1 {\frac{8}{x}} \, dx = 8 \ln |x| \bigg| \limits^e_1[/tex]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          [tex]\displaystyle \int\limits^e_1 {\frac{8}{x}} \, dx = 8[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Q&A Education