contestada

You spin the spinner, flip a coin, then spin the spinner again. Find the probability of the compound event. Write your answer as a fraction or percent rounded to the nearest tenth.



The probability of spinning an odd number, not flipping heads, then not spinning a 6 is

You spin the spinner flip a coin then spin the spinner again Find the probability of the compound event Write your answer as a fraction or percent rounded to th class=

Respuesta :

Answer: 24.7%

Step-by-step explanation:

            To find the probability of this compound event, we will first find the probability of each individual event.

[tex]\displaystyle \text{P(odd number)}=\frac{\text{wanted outcome}}{\text{possible outcomes}}=\frac{\text{odd number}}{\text{parts of the spinner}}=\frac{5}{9} }[/tex]

[tex]\displaystyle \text{P(not flipping heads)}=\frac{\text{wanted outcome}}{\text{possible outcomes}}=\frac{\text{flipping tails}}{\text{two sides to the coin}}=\frac{1}{2} }[/tex]

[tex]\displaystyle \text{P(not spinning a six)}=\frac{\text{wanted outcome}}{\text{possible outcomes}}=\frac{\text{1, 2, 3, 4, 5, 7, 8, 9}}{\text{parts of the spinner}}=\frac{8}{9} }[/tex]

            Next, we will multiply all of these event probabilities together to find the compound event.

[tex]\displaystyle \text{P(odd number, tails, not spinning a six)}=\frac{5}{9}*\frac{1}{2}*\frac{8}{9}=\frac{40}{162}=\frac{20}{81} \approx 0.24691358[/tex]

            Lastly, we will take this value and multiply it by 100 to create a percentage. Then we will round to the nearest tenth.

[tex]\displaystyle \text{P(odd number, tails, not spinning a six)} \approx 0.24691358 * 100 = 24.7\%[/tex]

Q&A Education