Respuesta :
Answer:
AB = 10
BC = 28
Step-by-step explanation:
3y - 2
A -------------->>---------------- B
/ /
/ /
2x - 4 / / x + 12
^ ^
/ /
D --------------->>---------------- C
y + 6
Opposite sides of a parallelogram are congruent.
AB = CD
3y - 2 = y + 6
2y = 8
y = 4
BC = AD
x + 12 = 2x - 4
-x = -16
x = 16
AB = 3y - -2
AB = 3(4) - 2
AB = 10
BC = x + 12
BC = 16 + 12
BC = 28
Answer:
- AB = 10
- BC = 28
Step-by-step explanation:
Given parallelogram ABCD with these side lengths, you want the measures of segments AB and BC.
- AB = 3y-2
- BC = x+12
- CD = y+6
- AD = 2x-4
Parallelogram
Opposite sides of a parallelogram are the same length. This lets us solve for x and y.
AB = CD
3y -2 = y +6
2y = 8 . . . . . . . . . add 2-y
y = 4 . . . . . . . . . divide by 2
AB = 3(4) -2 . . . find AB
AB = 10
BC = AD
x +12 = 2x -4
16 = x . . . . . . . . add 4-x
BC = 16 +12
BC = 28
<95141404393>