Respuesta :

log(base2)[2² * 6² / 3x] = 3 
144 / 3x = 2^3 = 8 
144/8 = 3x 
18 = 3x 
x = 6

Answer:

 x = 6

Step-by-step explanation:

  Given : [tex]2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3[/tex]

We have to solve the given expression [tex]2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3[/tex]

Subtract [tex]2\log _2\left(2\right)+2\log _2\left(6\right)[/tex] both sides , we have,

[tex]2\:log_2\:2\:+\:2\:log_26-\:log_2\:3x-(2\log _2\left(2\right)+2\log _2\left(6\right)):=\:3-(2\log _2\left(2\right)+2\log _2\left(6\right))[/tex]

Simplify, we have,

[tex]\log _2\left(3x\right)=3-2\log _2\left(2\right)-2\log _2\left(6\right)[/tex]

Divide both side by -1, we have,

[tex]\frac{-\log _2\left(3x\right)}{-1}=\frac{3}{-1}-\frac{2\log _2\left(2\right)}{-1}-\frac{2\log _2\left(6\right)}{-1}[/tex]

Simplify, we have,

[tex]\log _2\left(3x\right)=-3+2\log _2\left(2\right)+2\log _2\left(6\right)[/tex]

Apply log rule, [tex]a=\log _b\left(b^a\right)[/tex]

[tex]2\log _2\left(6\right)-1=\log _2\left(2^{2\log _2\left(6\right)-1}\right)=\log _2\left(18\right)[/tex]

When log have same base,

[tex]\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)[/tex]

[tex]\mathrm{For\:}\log _2\left(3x\right)=\log _2\left(18\right)\mathrm{,\:\quad solve\:}3x=18[/tex]

3x = 18

x = 6

Q&A Education