[tex]\bf ln(y)=\cfrac{3}{4}ln(x)+3\\\\
-----------------------------\\\\
recall\\\\
log_{{ a}}\left( \frac{x}{y}\right)\implies log_{{ a}}(x)-log_{{ a}}(y)
\\ \quad \\
% Logarithm of exponentials
log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)
\\\\\\
also\qquad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad
\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\
-----------------------------\\\\
thus
\\\\\\
[/tex]
[tex]\bf ln(y)=ln\left( x^{\frac{3}{4}} \right)+3\implies ln(y)-ln\left( x^{\frac{3}{4}} \right)=3
\\\\\\
ln\left( \cfrac{y}{x^{\frac{3}{4}}} \right)=3\implies ln\left( \cfrac{y}{\sqrt[4]{x^3}}\right)=3[/tex]