Respuesta :

[tex]\bf ln(y)=\cfrac{3}{4}ln(x)+3\\\\ -----------------------------\\\\ recall\\\\ log_{{ a}}\left( \frac{x}{y}\right)\implies log_{{ a}}(x)-log_{{ a}}(y) \\ \quad \\ % Logarithm of exponentials log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x) \\\\\\ also\qquad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad \sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\ -----------------------------\\\\ thus \\\\\\ [/tex]

[tex]\bf ln(y)=ln\left( x^{\frac{3}{4}} \right)+3\implies ln(y)-ln\left( x^{\frac{3}{4}} \right)=3 \\\\\\ ln\left( \cfrac{y}{x^{\frac{3}{4}}} \right)=3\implies ln\left( \cfrac{y}{\sqrt[4]{x^3}}\right)=3[/tex]
Q&A Education