Respuesta :
When you substitute a 3 you get 1/2e∧(-6) and when you substitute a t it just goes to 0
Answer
1/2e(-6)
Answer
1/2e(-6)
The area between the graph of [tex]y=e^{-2x}[/tex] and the x-axis for x greater than or equal to 3 will be [tex]\dfrac{e^{-6}}{2}[/tex] and it can be determine by doing the integration of the given function.
Given :
[tex]y=e^{-2x}[/tex]
The area between the graph of [tex]y=e^{-2x}[/tex] and the x-axis for x greater than or equal to 3 will be:
[tex]\rm Area = \int\limits^\infty_3 {e^{-2x}} \, dx[/tex]
[tex]\rm Area = 0-(-\dfrac{1}{2e^{6}})[/tex]
[tex]\rm Area = \dfrac{e^{-6}}{2}[/tex]
The area of region R is [tex]e^{-6}\div 2[/tex].
For more information, refer the link given below:
https://brainly.com/question/9658189