An electronics company packages its product in cube-shaped boxes. These boxes are placed into a larger box that measures 3 ft long, 114 ft wide, and 2 ft tall. The edge length of each cube-shaped box is 14 ft. How many cube-shaped boxes can fit into the container? A.240 B.480 C.720 D.960

Respuesta :

the answer is b.480 and i hope u get a good grade

Answer:

480

Step-by-step explanation:

Dimensions of larger box

Length = 3 feet

Width =[tex]1\frac{1}{4}=\frac{5}{4}[/tex]

Height = 1/4 feet

Volume of larger box = length * width * height

                                   = [tex]3*\frac{5}{4}*2[/tex]

                                   [tex]= 7.5 ft^{3}[/tex]

The edge length of each cube-shaped box placed in larger box is 1/4 ft.

Volume of smaller cube [tex]= x^{3}[/tex]

Where x is the edge length

Volume of smaller cube [tex]= 1/4^{3}[/tex]

                                        [tex]= 0.015625ft^{3}[/tex]    

No. of smaller cubes can be place in larger box [tex]=\frac{\text{Volume of larger box}}{\text{volume of small cube}}[/tex]

[tex]=\frac{7.5}{0.015625}[/tex]

[tex]=480[/tex]

Hence 480 cube-shaped boxes can fit into the container

Q&A Education