Respuesta :
Answer:
[tex]\textsf{19.} \quad \dfrac{(x+4)^2}{12}+\dfrac{(y-1)^2}{8}=1[/tex]
[tex]\textsf{20.} \quad \textsf{Center}: \;\;(-4, 1)[/tex]
[tex]\textsf{21.} \quad \textsf{Major axis}:\;\;4\sqrt{3}[/tex]
[tex]\textsf{22.} \quad \textsf{Minor axis}:\;\;4\sqrt{2}[/tex]
[tex]\textsf{23.} \quad \textsf{Sum of the focal radii}:\;\;4 \sqrt{3}[/tex]
[tex]\textsf{24.} \quad \textsf{Foci}:\;\;(-6, 1)\;\; \textsf{and}\;\;(-2,1)[/tex]
[tex]\begin{aligned}\textsf{25.} \quad &\textsf{Vertices}:\;\;(-4-2\sqrt{3}, 1) \;\; \textsf{and}\;\; (-4+2\sqrt{3}, 1)\\ &\textsf{Co-vertices}:\;\;(-4, 1-2\sqrt{2}) \;\; \textsf{and}\;\; (-4, 1+2\sqrt{2})\end{aligned}[/tex]
[tex]\textsf{26.} \quad \textsf{Eccentricity}\;\;\dfrac{\sqrt{3}}{3}[/tex]
27. See attachment.
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5 cm}\underline{General equation of an ellipse}\\\\$\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$\\\end{minipage}}[/tex]
Given equation:
[tex]2(x+4)^2+3(y-1)^2=24[/tex]
To write the equation of the ellipse in standard form, divide both sides by 24 so that the right side of the equation is equal to one:
[tex]\implies \dfrac{2(x+4)^2}{24}+\dfrac{3(y-1)^2}{24}=\dfrac{24}{24}[/tex]
[tex]\implies \dfrac{(x+4)^2}{12}+\dfrac{(y-1)^2}{8}=1[/tex]
Therefore:
- [tex]h = -4[/tex]
- [tex]k = 1[/tex]
- [tex]a^2 = 12 \implies a=2\sqrt{3}[/tex]
- [tex]b^2 = 8 \implies b=2 \sqrt{2}[/tex]
The center of the ellipse is (h, k).
Therefore, the coordinates of the center are (-4, 1).
As a > b, the ellipse is horizontal, so 2a is the major axis and 2b is the minor axis. Therefore:
- Major axis = 2 × 2√3 = 4√3
- Minor axis = 2 × 2√2 = 4√2
The focal radius is the distance from a point on the ellipse to a focus.
The sum of the focal radii is equal to the length of the major axis.
Therefore, the sum of the focal radii is 4√3.
As a > b, the coordinates of the foci are (h±c, k).
As c² = a² - b², first find the value of c:
[tex]\implies c^2=12-8[/tex]
[tex]\implies c=\sqrt{4}=2[/tex]
Therefore, the coordinates of the foci are:
- (-4+2, 1) = (-2, 1)
- (-4-2, 1) = (-6, 1)
As a > b, the coordinates of the vertices are (h±a, k):
- (-4-2√3, 1) and (-4+2√3, 1)
and the coordinates of the co-vertices are (h, k±b):
- (-4, 1-2√2) and (-4, 1+2√2)
The eccentricity of the ellipse is:
[tex]\implies e=\dfrac{c}{a}=\dfrac{2}{2\sqrt{3}}=\dfrac{\sqrt{3}}{3}[/tex]