In the diagram, BC = 12 /. Find AB. Write your answer in simplest form.B450O AB = 24O AB = 12VO AB = 24 2O AB = 12
Given data:
The given right angle triangle.
The expression for cos(45°) is,
[tex]\begin{gathered} \cos (45^{\circ})=\frac{BC}{AB} \\ \frac{1}{\sqrt[]{2}}=\frac{12\sqrt[]{2}}{AB} \\ AB=24 \end{gathered}[/tex]Thus, the value of AB length is 24.