Respuesta :

To find the angles shown we need to remember the definition of the tangent function:

[tex]\tan \theta=\frac{\text{opp}}{\text{adj}}[/tex]

In the case for angle x we notice that the opposite leg is 1 and the adjacent leg is 3, plugging this values in the equation above and solving for x we have:

[tex]\begin{gathered} \tan x=\frac{1}{3} \\ x=\tan ^{-1}(\frac{1}{3}) \\ x=18.4 \end{gathered}[/tex]

In the case for angle y we notice that the opposite leg is 3 and the adjacent leg is 1, plugging this values in the equation above and solving for y we have:

[tex]\begin{gathered} \tan y=\frac{3}{1} \\ y=\tan ^{-1}(\frac{3}{1}) \\ y=71.6 \end{gathered}[/tex]

Therefore, x=18.4° and y=71.6°

Q&A Education