There are 6 letters in the words GIGGLE, to be able to find the number of ways to arrange the letters, we will be using the Permutation Formula:
[tex]\text{ P(n,r) = }\frac{\text{ n!}}{\text{ (n - r)!}}[/tex]Where,
n = total number of objects in the set = number of letters in GIGGLE = 6
r = number of choosing objects from the set = be arranged in 6 letters still = 6
We get,
[tex]\text{ P(n,r) = }\frac{\text{ n!}}{\text{ (n - r)!}}[/tex][tex]\text{ P(6,6) = }\frac{\text{ 6!}}{\text{ (6 - 6)!}}[/tex][tex]\text{ P(6,6) = 6 x 5 x 4 x 3 x 2 x 1}[/tex][tex]\text{ P(6,6) = }720[/tex]Therefore, there 720 ways to arrange the letters in GIGGLE.
The answer is 720.