I need to know the real solution for acts and the imaginary solutions
Equate the to zero, such that all the terms on the right side is transposed to the left side.
[tex]\begin{gathered} 4x^4=32x^3-68x^2 \\ 4x^4-32x^3+68x^2=0 \\ \\ \text{Factor out all the GCF of all the terms which is }4x^2 \\ 4x^4-32x^3+68x^2=0 \\ 4x^2(x^2-8x+17)=0 \end{gathered}[/tex]Apply the quadratic formula to the quadratic term.
[tex]\begin{gathered} x^2-8x+17=0 \\ \text{where} \\ a=1,b=-8,c=17 \\ \\ x=\frac{ -b \pm\sqrt{b^2 - 4ac}}{ 2a } \\ x=\frac{ -(-8) \pm\sqrt{(-8)^2 - 4(1)(17)}}{ 2(1) } \\ x=\frac{ 8 \pm\sqrt{64 - 68}}{ 2 } \\ x=\frac{ 8 \pm\sqrt{-4}}{ 2 } \\ x=\frac{ 8 \pm2\, i}{ 2 } \\ x=\frac{ 8 }{ 2 }\pm\frac{2\, i}{ 2 } \\ \\ x=\frac{ 8 }{ 2 }+\frac{2\, i}{ 2 } \\ x=\frac{8}{2}+\frac{2i}{2} \\ x=4+i \\ \\ x=\frac{8}{2}-\frac{2i}{2} \\ x=\frac{8}{2}-\frac{2i}{2} \\ x=4-i \end{gathered}[/tex]Now we have 2 solutions, solve for the other solution which is the solution for 4x².
[tex]\begin{gathered} \text{Equate to zero} \\ 4x^2=0 \\ \frac{4x^2}{4}=\frac{0}{4} \\ x^2=0 \\ \sqrt[]{x^2}=\sqrt[]{0} \\ x=0 \end{gathered}[/tex]Summarizing the solution.
[tex]\begin{gathered} \text{The real solution for }x\text{ is }0, \\ \text{and the imaginary solution are }4\pm1i \end{gathered}[/tex]