Answer:
x = -13 and y = -5
Explanation:
Given the below equations;
[tex]\begin{gathered} -2y=-42-4x \\ -x-2y=23 \end{gathered}[/tex]Let's go ahead and solve simultaneously using the substitution method.
From the 2nd equation;
[tex]\begin{gathered} -x=2y+23 \\ \therefore x=-2y-23 \end{gathered}[/tex]Let's put x = -2y - 23 into the 1st equation and find y;
[tex]\begin{gathered} -2y=-42-4(-2y-23) \\ -2y=-42+8y+92 \\ -2y-8y=50 \\ -10y=50 \\ y=-\frac{50}{10} \\ \therefore y=-5 \end{gathered}[/tex]Let's substitute the value of y into x = -2y - 23 and find x;
[tex]\begin{gathered} x=-2(-5)-23 \\ =10-23 \\ \therefore x=-13 \end{gathered}[/tex]