Simply the expression below, assume the denomination does not equal zero
Answer
[tex]\frac{2x+1}{x+5}[/tex]Explanation
To simplify this expression, we will factorize each of these equations
6x² - 7x - 5
= 6x² - 10x + 3x - 5
= 2x (3x - 5) + 1 (3x - 5)
= (2x + 1) (3x - 5)
3x² + 10x - 25
= 3x² + 15x - 5x - 25
= 3x (x + 5) - 5 (x + 5)
= (3x - 5) (x + 5)
So, we can write the expression and simplify below
[tex]\begin{gathered} \frac{6x^2-7x-5}{3x^2+10x-25} \\ =\frac{(2x+1)(3x-5)_{}}{(3x-5)(x+5)} \\ \text{The (3x - 5) in both numerator and denominator cancels out and we have} \\ \frac{2x+1}{x+5} \end{gathered}[/tex]Hope this Helps!!!