Respuesta :

Answer:

(a) (r o q)(7) = 8

(b)

Explanation:

Given the functions:

[tex]\begin{gathered} q(x)=x^2+6 \\ r(x)=\sqrt[]{x+9} \end{gathered}[/tex]

Part A

[tex](r\circ q)(7)=r\lbrack q(7)\rbrack[/tex]

First, evaluate q(7).

[tex]q(7)=7^2+6=49+6=55[/tex]

Therefore:

[tex]\begin{gathered} (r\circ q)(7)=r\lbrack q(7)\rbrack=r(55) \\ r(55)=\sqrt[]{55+9}=\sqrt[]{64}=8 \\ \implies(r\circ q)(7)=8 \end{gathered}[/tex]

Part B

Q&A Education