We need to use the binomial theorem where an expression has an exponent of four.
Now, we need to follow the next expression:
[tex](a+b)^4=1a^4+4a^3b+6a^2b^2+4ab^3+1b^4[/tex]We have the next binomial:
[tex](4x-7y)^4[/tex]Use a = 4x and b=-7y. Then replace on the binomial theorem:
[tex](4x-7y)^4=(1(4x)^4+4(4x)^3(-7t)+6(4x)^2(-7y)^2+4(4x)(-7y)^3+1(-7y)^4[/tex]Solve each exponent, then the result for the binomial is:
[tex](4x-7y)=254x^4-1792x^3y+4704x^2y^2-5488xy^3+2401y^4[/tex]