For each value below, enter the number correct to four decimal places.
We need to find the average velocity at each time interval.
The average velocity ΔV is the change in position at two moments divided by the change of time:
[tex]\begin{gathered} \Delta V=\frac{h_2-h_1}{t_2-t_1}=\frac{56t_2-0.83t_2^{2}-56t_1+0.83t_1^{2}}{t_2-t_1} \\ \\ \Delta V=\frac{56(t_2-t_1)-0.83(t^2_2-t^2_1)}{t_2-t_1} \end{gathered}[/tex]Using the above formula for each interval, we find:
• [7,8]:
[tex]\Delta V=\frac{56(8-7)-0.83(8^{2}-7^{2})}{8-7}=56-0.83(15)=43.55[/tex]• [7,7.5]:
[tex]\Delta V=\frac{56(7.5-7)-0.83(7.5^2-7^2)}{7.5-7}=\frac{56\mleft(0.5\mright)-0.83\mleft(7.25\mright)}{0.5}=43.965[/tex]• [7,7.1]:
[tex]\Delta V=\frac{56(7.1-7)-0.83(7.1^2-7^2)}{7.1-7}=\frac{56(0.1)-0.83(1.41)}{0.1}\cong44.2970[/tex]• [7,7.01]:
[tex]\Delta V=\frac{56(7.01-7)-0.83(7.01^2-7^2)}{7.01-7}=\frac{56(0.01)-0.83(0.1401)}{0.01}=44.3717[/tex]• [7,7.001]:
[tex]\Delta V=\frac{56(7.001-7)-0.83(7.001^2-7^2)}{7.001-7}=\frac{56(0.001)-0.83(0.014001)}{0.001}\cong44.3792[/tex]Therefore, the average velocities are:
[7,8]: 43.55 m/s
[7,7.5]: 43.965 m/s
[7,7.1]: 44.2970 m/s
[7,7.01]: 44.3717 m/s
[7,7.001]: 44.3792 m/s