Respuesta :

Hello!

A) Equation:

[tex]A=P\mleft(1+\frac{r}{n}\mright)^{nt}[/tex]

Variables:

• A = amount

,

• P = principal

,

• r = rate

,

• n = number of periods (12 months)

,

• t = time (iwhole or decimals)

B)

• P = $6500

,

• t = 10 years

,

• r = 3.7% = 0.037

Using the information in the formula:

[tex]\begin{gathered} A=6500(1+\frac{0.037}{12})^{12\cdot10} \\ \\ A=6500\cdot(1.00030833)^{120} \\ A=$\$9,404.92$ \end{gathered}[/tex]

C)

Let's consider the same information as above, just changing the time to 20 years:

[tex]\begin{gathered} A=6500(1+\frac{0.037}{12})^{12\cdot20} \\ \\ A=6500\cdot(1.00030833)^{240} \\ A=$\$13,608.08$ \end{gathered}[/tex]

Let's calculate the difference:

[tex]\$13,608.08-$\$9,404.92$=\$4203.16[/tex]

Q&A Education