Respuesta :

Given the Quadratic Equation:

[tex]x^2+8x-29=0[/tex]

You can identify that it has this form:

[tex]ax^2+bx+c=0[/tex]

The Quadratic Formula is:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

In this case:

[tex]\begin{gathered} a=1 \\ b=8 \\ c=-29 \end{gathered}[/tex]

Then, you can substitute values into the Quadratic Formula and simplify:

[tex]\begin{gathered} x=\frac{-(8)\pm\sqrt[]{(8)^2-(4)(1)(-29)}}{2\cdot1} \\ \\ x=\frac{-8\pm\sqrt[]{180}}{2} \end{gathered}[/tex]

Notice that the symbol ± indicates that you actually have these two equations:

[tex]\begin{gathered} x_1=\frac{-8+\sqrt[]{180}}{2} \\ \\ \\ x_2=\frac{-8-\sqrt[]{180}}{2} \end{gathered}[/tex]

Therefore, evaluating, you get:

[tex]\begin{gathered} x_1=-4+3\sqrt[]{5} \\ \\ x_2=-4-3\sqrt[]{5} \end{gathered}[/tex]

Hence, the answer is:

[tex]\begin{gathered} x_1=-4+3\sqrt[]{5} \\ \\ x_2=-4-3\sqrt[]{5} \end{gathered}[/tex]
Q&A Education