Use your calculator to fill in the table below based on f(x)=x^5+3Is f(x) even ,odd,or neither ?explain
Given the function f(x):
[tex]f(x)=x^5+3[/tex]We will find the value of f(x) when x = {-2, -1, 0, 1, 2}
so,
[tex]\begin{gathered} x=-2\rightarrow y=(-2)^5+3=-29 \\ x=-1\rightarrow y=(-1)^5+3=2 \\ x=0\rightarrow y=(0)^5+3=3 \\ x=1\rightarrow y=(1)^5+3=4 \\ x=2\rightarrow y=(2)^5+3=35 \end{gathered}[/tex]From the results, we can conclude the following:
[tex]\begin{gathered} f(-x)\ne f(x) \\ \text{and} \\ f(-x)\ne-f(x) \end{gathered}[/tex]So, the function is neither even nor odd