If m∠CDB = 60° and m∠DBC = 50°, then:m∠DBA = m∠DAB =
Answer:
m∠DBA = 50 degrees
m∠DAB = 70 degrees
Explanation:
The given angles are highlighted in the diagram below:
The diagonal bisects the angle at each vertex, therefore:
[tex]m\angle\text{DBA}=50\degree[/tex]In Triangle DAB
[tex]\begin{gathered} m\angle\text{DAB}+m\angle\text{ADB}+m\angle\text{DBA}=180\degree \\ m\angle\text{DAB}+60\degree+50\degree=180\degree \\ m\angle\text{DAB}+110\degree=180\degree \\ m\angle\text{DAB}=180\degree-110\degree \\ m\angle\text{DAB}=70\degree \end{gathered}[/tex]