Respuesta :

Lets draw a picture of our points:

since triangles are similar the following ratios must be preserved:

[tex]\begin{gathered} \text{ratioX}=\frac{\text{xred}}{\text{xgreen}} \\ \text{ratioY=}\frac{\text{yred}}{ygreen} \end{gathered}[/tex]

where these values come from the following picture:

for the first x red-ratio, we have

[tex]\text{ratioX}=\frac{8-6}{3-2}=\frac{2}{1}=2[/tex]

for green-ratio, we have

[tex]\text{ratioY}=\frac{7-1}{3-(-2)}=\frac{6}{5}[/tex]

Then, by applying these results, the ratios from point S=(x,y) to point N=(7,5) must be

[tex]\begin{gathered} \frac{x}{7}=2 \\ \frac{y}{5}=\frac{6}{5} \end{gathered}[/tex]

From the first relation, we get

[tex]x=7\times2=14[/tex]

and from the second relation, we have

[tex]y=5\times\frac{6}{5}=6[/tex]

then, the searched point S has coordinates S=( 14,6)

Ver imagen MalliM655135
Ver imagen MalliM655135
Q&A Education