Respuesta :
100 < perimeter < 160
Perimeter = 2(width + length)
100 < 2(width + length) < 160
50 < 30 + length < 80
20 < length < 50
This inequality shows the possible values of the length
Perimeter = 2(width + length)
100 < 2(width + length) < 160
50 < 30 + length < 80
20 < length < 50
This inequality shows the possible values of the length
Answer:
Part A) The graph in the attached figure
Part B) [tex]L\geq20\ cm[/tex]  and  [tex]L \leq 50\ cm[/tex]
Step-by-step explanation:
Part A)
we know that
The perimeter of a rectangle is equal to
[tex]P=2(L+W)[/tex]
we have
[tex]W=30\ cm[/tex]
and the perimeter
[tex]100\ cm \leq P\leq 160\ cm[/tex]
For [tex]P=100\ cm[/tex]
[tex]100=2(L+30)[/tex]
[tex]L=50-30=20\ cm[/tex]
so
[tex]L\geq20\ cm[/tex]
For [tex]P=160\ cm[/tex]
[tex]160=2(L+30)[/tex]
[tex]L=80-30=50\ cm[/tex]
so
[tex]L \leq 50\ cm[/tex]
The solution of the possible lengths of the rectangle is the interval
[tex][20,50][/tex]
All real numbers greater than or equal to [tex]20\ cm[/tex] and less than or equal to [tex]50\ cm[/tex]
[tex]20\ cm \leq L\leq 50\ cm[/tex]
see the graph in the attached figure
Part B)
we know that
A compound inequality contains at least two inequalities that are separated by either "and" or "or". The graph of a compound inequality with an "and" represents the intersection of the graph of the inequalities.
In this problem
The compound inequality is equal to
[tex]L\geq20\ cm[/tex]  and  [tex]L \leq 50\ cm[/tex]