Respuesta :
A graphical analysis of this function indicates that out of those possible roots, -5/2 is the only true root
Answer:
[tex]\frac{-5}{2}[/tex] Option A
Step-by-step explanation:
Given that a function,
f(x) = 6x⁴ + 5x³ - 33x² - 12x + 20
put the numbers in place of x, if function become 0 it means that number is root of the given function.
For [tex]\frac{-5}{2}[/tex]
[tex]f(\frac{-5}{2})=6(\frac{-5}{2})^{4}+5(\frac{-5}{2})^{3}-33(\frac{-5}{2})^{2}-12(\frac{-5}{2})+20[/tex]
[tex]f(\frac{-5}{2})=0[/tex]
So, [tex]\frac{-5}{2}[/tex] is the root of given function.
That's the final answer.