Respuesta :
Solution :
[tex]x = \frac{4 + \sqrt{43} }{2} .x = 4 + \frac{4 - \sqrt{43} }{2} [/tex]
Step-by-step explanation:
[tex] \frac{1}{(x - 5)} + \frac{3}{(x - 2)} - 4[/tex]
1. Multiply by LCM
[tex]x = 2 + 3( x - 5) = 4 - (x - 5)(x + 2)[/tex]
2. Solve
[tex]x = 2 + 3(x - 5) = 4 (x - 5)(x + 2)[/tex]
[tex]x = \frac{4 + \sqrt{43} }{2} .x = 4 + \frac{4 - \sqrt{43} }{2} [/tex]
3.Verify Solutions
Find undefined (singularity) points :
x=5,x=–2
[tex]x = \frac{4 + \sqrt{43} }{2} .x = 4 + \frac{4 - \sqrt{43} }{2} [/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{x-5}+\dfrac{3}{x+2}=4[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{x+2+3x-15}{(x-5)(x+2)}=4[/tex]
[tex]\\ \rm\Rrightarrow 4x-13=4(x-5)(x+2)[/tex]
[tex]\\ \rm\Rrightarrow 4x-13=4(x(x+2)-5(x+2))[/tex]
[tex]\\ \rm\Rrightarrow 4x-13=4(x^2+2x-5x-10)[/tex]
[tex]\\ \rm\Rrightarrow 4x-13=4(x^2-3x-10)[/tex]
[tex]\\ \rm\Rrightarrow 4x-13=4x^2-12x-40[/tex]
[tex]\\ \rm\Rrightarrow 4x^2-16x-53=0[/tex]
On solving we get
[tex]\\ \rm\Rrightarrow x=2\pm\dfrac{69}{2}[/tex]