PLEASE SOLVE WITH EXPLANATION!
DONT ANSWER JUST FOR POINTS
:)
Answer:
-2
Step-by-step explanation:
Apply the difference of two squares formula:
[tex]\displaystyle \large{(a-b)(a+b) = a^2-b^2}[/tex]
Therefore:
[tex]\displaystyle \large{(3-\sqrt{11})(3+\sqrt{11}) = 3^2-(\sqrt{11})^2}\\\displaystyle \large{(3-\sqrt{11})(3+\sqrt{11}) = 9-11}\\\displaystyle \large{(3-\sqrt{11})(3+\sqrt{11}) = -2}[/tex]
Therefore, -2 is the final answer.
__________________________________________________________
Summary
[tex]\displaystyle \large{(a-b)(a+b)=a^2-b^2}[/tex]
[tex]\displaystyle \large{(\sqrt{a})^2 = a}[/tex]
[tex](3 - \sqrt{11} )(3 + \sqrt{11} )[/tex]
Use the identity (a-b)(a+b)=a²-b²
[tex] {3}^{2} - { \sqrt{11 }^{2} }[/tex]
[tex]9 - 11[/tex]
[tex] - 2[/tex]
Thus, Option A is the correct choice!!~