Respuesta :

The answer is 12^2=x^2+8^2-16x(cos(72°) 
x^2-4.9443x=80 
(x-2.4721)^2=86.1115 
x-2.4721=±9.2796 
x=11.7517 

B=72°, b=12, c=8, a=11.8 
C=arcsin(8/12*sin(72°))=39.3° 
A=68.7° 

Answer:

Part 1) [tex]C=39.3\°[/tex]

Part 2) [tex]A=68.7\°[/tex]

Part 3) [tex]a=11.8\ units[/tex]

Step-by-step explanation:

we know that

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)} =\frac{c}{sin(C)}[/tex]

In this problem we have

[tex]B=72\°[/tex]

[tex]b=12\ units[/tex]

[tex]c=8\ units[/tex]

Step 1

Find the measure angle C

[tex]\frac{b}{sin(B)} =\frac{c}{sin(C)}[/tex]

substitute the values and solve for C

[tex]\frac{12}{sin(72\°)} =\frac{8}{sin(C)}\\ \\sin(C)=sin(72\°)*(8/12)\\ \\sin(C)= 0.6340\\ \\C=39.3\°[/tex]

Step 2

Find the measure of angle A

we know that

The sum of the internal angles of the triangle must be equal to [tex]180[/tex] degrees

so

[tex]m<A+m<B+m<C=180\°[/tex]

we have

[tex]m<B=72\°[/tex]

[tex]m<C=39.3\°[/tex]

[tex]m<A+72\°+39.3\°=180\°[/tex]

[tex]m<A=180\°-72\°-39.3\°=68.7\°[/tex]

Step 3

Find the measure of side a

Applying the law of cosines

[tex]a^{2}=b^{2}+c^{2}-2(b)(c)cos(A)[/tex]

substitute

[tex]a^{2}=12^{2}+8^{2}-2(12)(8)cos(68.7\°)[/tex]

[tex]a^{2}=208-(192)cos(68.7\°)[/tex]

[tex]a^{2}=138.26[/tex]

[tex]a=11.8\ units[/tex]

Q&A Education