Respuesta :

change of base is
[tex]log_a(b)= \frac{log_c(b)}{log_c(a)} [/tex]
change base to 3
[tex]log_5(92)= \frac{log_3(92)}{log_3(5)} [/tex]
why would you want base 3? base 10 is on most calculators
anyway, the value would be 2.809555

Answer:

[tex]\log_5 92=2.809[/tex]

[tex]\log_3 2.809=0.940[/tex]            

Step-by-step explanation:

Given : Expression [tex]\log_5 92[/tex]

To find : Use the Change of Base Formula to evaluate the expression also  convert the expression to a logarithm in base 3?

Solution :  

Applying the change of Base Formula,

i.e. [tex]\log_b x=\frac{log_a x}{\log_a b}[/tex]

We get,

[tex]\log_5 92=\frac{\log 92}{\log 5}[/tex]

[tex]\log_5 92=\frac{1.963}{0.698}[/tex]

[tex]\log_5 92=2.809[/tex]

So, The expression is [tex]\log_5 92=2.809[/tex]

Now, converting the expression to a logarithm in base 3.

Taking log base 3 in 2.809,

[tex]\log_3 2.809=\frac{log 2.809}{\log 3}[/tex]

[tex]\log_3 2.809=\frac{0.448}{0.477}[/tex]

[tex]\log_3 2.809=0.940[/tex]

Therefore, The solution is [tex]\log_3 2.809=0.940[/tex]

Q&A Education