Complete the multiplication: AB
Option: B is the correct answer.
[tex]B.\ \left[\begin{array}{ccc}6&24\\3.4&13\end{array}\right][/tex]
We are given two matrices A and B as follows:
[tex]A=\left[\begin{array}{ccc}3&0\\2&-1\end{array}\right][/tex]
and
[tex]B=\left[\begin{array}{ccc}2&8\\0.6&3\end{array}\right][/tex]
We know that the multiplication of two matrices of the type:
[tex]A=\left[\begin{array}{ccc}a&b\\c&d\end{array}\right][/tex]
and
[tex]B=\left[\begin{array}{ccc}a'&b'\\c'&d'\end{array}\right][/tex]
is given by:
[tex]AB=\left[\begin{array}{ccc}aa'+bc'&ab'+bd'\\ca'+dc'&cb'+dd'\end{array}\right][/tex]
Hence, here we have:
[tex]AB=\left[\begin{array}{ccc}3\times 2+0\times 0.6&3\times 8+0\times 3\\2\times 2+(-1)\times 0.6&2\times 8+(-1)\times 3\end{array}\right][/tex]
i.e.
[tex]AB=\left[\begin{array}{ccc}6+0&24+0\\4-0.6&16-3\end{array}\right][/tex]
i.e.
[tex]AB=\left[\begin{array}{ccc}6&24\\3.4&13\end{array}\right][/tex]