contestada

using hooke's law, f s p r i n g = k x , find the distance a spring with an elastic constant of 4 n/cm will stretch if a 2 newton force is applied to it.

a. 4 cm
b. 8 cm
c. 2 cm
d. 1/2 cm.

Respuesta :

Answer: The correct answer is Option d.

Explanation:

Formula for Hooke's Law states that:

[tex]F_{spring}=kx[/tex]

where, F = Force applied = 2N

k = spring constant = 4 N/cm

x = displacement of the spring from equilibrium position = ? cm

Putting values in above equation, we calculate the displacement or distance of the spring, we get:

[tex]2N=4N/cm\times x\\\\x=\frac{1}{2}cm[/tex]

Hence, the correct option is Option d.

Hello!

using hooke's law, f s p r i n g = k x , find the distance a spring with an elastic constant of 4 n/cm will stretch if a 2 newton force is applied to it.

Data:

Hooke represented mathematically his theory with the equation:

F = K * Δx  

On what:

F (elastic force) = 2 N

K (elastic constant) = 4 N/cm

Δx (deformation or elongation of the elastic medium or distance from a spring) = ?

Solving:

[tex]F = K * \Delta{x}[/tex]

[tex]2\:N = 4\:N/cm*\Delta{x}[/tex]

[tex]4\:N/cm*\Delta{x} = 2\:N[/tex]

[tex]\Delta{x} = \dfrac{2\:\diagup\!\!\!\!\!N}{4\:\diagup\!\!\!\!\!N/cm}[/tex]

simplify by 2  

[tex]\Delta{x} = \dfrac{2}{4}\frac{\div2}{\div2}[/tex]

[tex]\boxed{\boxed{\Delta{x} = \dfrac{1}{2}\:cm}}\Longleftarrow(distance)\end{array}}\qquad\checkmark[/tex]

Answer:  

d. 1/2 cm  

_______________________  

I Hope this helps, greetings ... Dexteright02! =)

Q&A Education