Respuesta :
Yes; the following ratios:
____________________________
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
_______________________________
do, in fact, form a proportion.
_________________________
Note that the fraction, or proportion, "[tex] \frac{2}{3}[/tex]", cannot be reduced further into whole numbers.
___________________________________
We are given:
____________________________
[tex] \frac{2}{3} = \frac{16}{24} [/tex] .
_________________________________
The question is: Can "[tex] \frac{16}{24} [/tex]" be further reduced into whole numbers—specifically, does "[tex] \frac{16}{24} [/tex]" EQUAL "[tex] \frac{2}{3} [/tex]" ?
________________________________
→ 16/24 =? 2/3 ?
______________________
→ (16 ÷ 8) / (24 ÷ 8) = (2) / (3) = 2/3 . Yes.
_____________________________________
→ As such, [tex] \frac{2}{3} = \frac{16}{24} [/tex] ; and the following ratios:
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
form a proportion.
_____________________________
Also, given:
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
____________________________________
→ If the "cross-products" are equal, then the ratios form a proportion.
_______________________________
→ Does (2) * (24) =? (16) * (3) ?
____________________________
→ Does 48 =? 48 ? Yes!
____________________________
→ As such, the following ratios;
→ [tex] \frac{2}{3} = \frac{16}{24} [/tex] ; do, in fact, form a proportion.
________________________________________________________
____________________________
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
_______________________________
do, in fact, form a proportion.
_________________________
Note that the fraction, or proportion, "[tex] \frac{2}{3}[/tex]", cannot be reduced further into whole numbers.
___________________________________
We are given:
____________________________
[tex] \frac{2}{3} = \frac{16}{24} [/tex] .
_________________________________
The question is: Can "[tex] \frac{16}{24} [/tex]" be further reduced into whole numbers—specifically, does "[tex] \frac{16}{24} [/tex]" EQUAL "[tex] \frac{2}{3} [/tex]" ?
________________________________
→ 16/24 =? 2/3 ?
______________________
→ (16 ÷ 8) / (24 ÷ 8) = (2) / (3) = 2/3 . Yes.
_____________________________________
→ As such, [tex] \frac{2}{3} = \frac{16}{24} [/tex] ; and the following ratios:
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
form a proportion.
_____________________________
Also, given:
[tex] \frac{2}{3} = \frac{16}{24} [/tex] ;
____________________________________
→ If the "cross-products" are equal, then the ratios form a proportion.
_______________________________
→ Does (2) * (24) =? (16) * (3) ?
____________________________
→ Does 48 =? 48 ? Yes!
____________________________
→ As such, the following ratios;
→ [tex] \frac{2}{3} = \frac{16}{24} [/tex] ; do, in fact, form a proportion.
________________________________________________________