Answer:
[tex]x = -2; x = 5[/tex]
Step-by-step explanation:
Given
[tex]f(x) = -x^2 + 4x + 12[/tex]
[tex]g(x) = x +2[/tex]
Required
For what value of x is: [tex]f(x) = g(x)[/tex]
[tex]f(x) = g(x)[/tex] implies that
[tex]-x^2 + 4x + 12 = x + 2[/tex]
Collect like terms
[tex]-x^2 + 4x -x + 12 -2 = 0[/tex]
[tex]-x^2 + 3x + 10 = 0[/tex]
Expand
[tex]-x^2 + 5x-2x + 10 = 0[/tex]
Factorize
[tex]-x(x - 5)-2(x - 5) = 0[/tex]
Factor out x - 5
[tex](-x - 2)(x - 5) = 0[/tex]
Solve for x
[tex]-x - 2 = 0; x - 5 = 0[/tex]
So:
[tex]x = -2; x = 5[/tex]