Respuesta :

To find the inverse, interchange the variables and solve for y.
f^-1(x) = sqrt 7+x, - sqrt 7+x

Answer:

The inverse of equation [tex]y=x^{2}-7[/tex] is  [tex]\sqrt{y + 7}[/tex]

Step-by-step explanation:

We need to find the inverse of of function [tex]y=x^{2}-7[/tex]

[tex]f(x)=y=x^{2}-7[/tex]

To find inverse , write function in term of 'y'

Add both the sides by 7,

[tex]y + 7 = x^{2}[/tex]

Take root both the sides, in above expression

[tex]\sqrt{y + 7} = x[/tex]

Hence, the inverse of equation [tex]y=x^{2}-7[/tex] is  [tex]\sqrt{y + 7} [/tex]

Q&A Education