Respuesta :
To find the inverse, interchange the variables and solve for y.
f^-1(x) = sqrt 7+x, - sqrt 7+x
f^-1(x) = sqrt 7+x, - sqrt 7+x
Answer:
The inverse of equation [tex]y=x^{2}-7[/tex] is [tex]\sqrt{y + 7}[/tex]
Step-by-step explanation:
We need to find the inverse of of function [tex]y=x^{2}-7[/tex]
[tex]f(x)=y=x^{2}-7[/tex]
To find inverse , write function in term of 'y'
Add both the sides by 7,
[tex]y + 7 = x^{2}[/tex]
Take root both the sides, in above expression
[tex]\sqrt{y + 7} = x[/tex]
Hence, the inverse of equation [tex]y=x^{2}-7[/tex] is [tex]\sqrt{y + 7} [/tex]