What is the length of the altitude of the equilateral triangle below
Answer
Find out the altitude of the equilateral triangle .
To proof
By using the trignometric identity.
[tex]tan\theta = \frac{Perpendicular}{base}[/tex]
As shown in the diagram
and putting the values of the angles , base and perpendicular
[tex]tan 60^{\circ} = \frac{a}{4\sqrt{3}}[/tex]
[tex]tan 60^{\circ} = \sqrt{3}[/tex]
solving
[tex]\sqrt{3} = \frac{a}{4\sqrt{3}}[/tex]
[tex]a = \sqrt{3}\times 4 \sqrt{3}[/tex]
As
[tex]\sqrt{3}\times \sqrt{3} = 3[/tex]
put in the above
a = 4 × 3
a = 12 units
The length of the altitude of the equilateral triangle is 12 units .
Option (F) is correct .
Hence proved
Answer:
F. 12
Step-by-step explanation:
We have been given an image of a triangle and we are asked to find the length of the altitude of our given triangle.
Since we know that altitude of an equilateral triangle splits it into two 30-60-90 triangle.
We will use Pythagoras theorem to solve for the altitude of our given triangle.
[tex]\text{Leg}^2+\text{Leg}^2=\text{Hypotenuse}^2[/tex]
Upon substituting our given values in above formula we will get,
[tex](4\sqrt{3})^2+a^2=(8\sqrt{3})^2[/tex]
[tex]16*3+a^2=64*3[/tex]
[tex]48+a^2=192[/tex]
[tex]48-48+a^2=192-48[/tex]
[tex]a^2=144[/tex]
Upon taking square root of both sides we will get,
[tex]a=\sqrt{144}[/tex]
[tex]a=12[/tex]
Therefore, the length of the altitude of our given equilateral triangle is 12 units and option F is the correct choice.