Respuesta :
Assuming that's log base 10, the inverse would be k(x) = 10^x
h(k(x)) = x
and
k(h(x)) = x
h(k(x)) = x
and
k(h(x)) = x
to solve
replace h(x) with y
switch x and y
solve for y
replace y with h⁻¹(x)
remember that
logx is base 10
and that
[tex]log_xy=b[/tex] means [tex]x^b=y[/tex]
so
y=log(x)
x=log(y)
convert, assume base 10
[tex]10^x=y[/tex]
ha! that's already solved for y
[tex]y=10^x[/tex]
[tex]h^{-1}(x)=10^x[/tex]
replace h(x) with y
switch x and y
solve for y
replace y with h⁻¹(x)
remember that
logx is base 10
and that
[tex]log_xy=b[/tex] means [tex]x^b=y[/tex]
so
y=log(x)
x=log(y)
convert, assume base 10
[tex]10^x=y[/tex]
ha! that's already solved for y
[tex]y=10^x[/tex]
[tex]h^{-1}(x)=10^x[/tex]