Answer:
[tex]\frac{75}{4\pi }[/tex] inches or approximately 5.97 inches
Step-by-step explanation:
Use the cone volume formula: V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
The diameter is 8 inches, so the radius will be 4 inches.
Plug in the radius and volume, and solve for h
V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
100 = [tex]\pi[/tex](4²)([tex]\frac{h}{3}[/tex])
100 = 16[tex]\pi[/tex][tex]\frac{h}{3}[/tex]
Divide each side by 16[tex]\pi[/tex]
[tex]\frac{25}{4\pi }[/tex] = [tex]\frac{h}{3}[/tex]
Cross multiply and solve for h:
4[tex]\pi[/tex]h = 75
h = [tex]\frac{75}{4\pi }[/tex]
So, the cone's height is [tex]\frac{75}{4\pi }[/tex] or approximately 5.97 inches