Answer:
Part A)
[tex]m<L=130\°[/tex]
[tex]m<M=50\°[/tex]
[tex]m<N=130\°[/tex]
Part B)
[tex]KL=7\ units[/tex]
[tex]LM=10\ units[/tex]
Step-by-step explanation:
we know that
In a parallelogram, the opposite angles and opposite sides are congruent, and consecutive angles are supplementary
Part A)
we know that
[tex]m<K=m<M[/tex] ----> by opposite angles
[tex]m<L=m<N[/tex] ----> by opposite angles
[tex]m<K+m<L=180\°[/tex] -----> by consecutive angles
we have
[tex]m<K=50\°[/tex]
Find the value of m<L
[tex]50\°+m<L=180\°[/tex]
[tex]m<L=180\°-50\°=130\°[/tex]
therefore
[tex]m<N=m<L=130\°[/tex]
[tex]m<M=m<K=50\°[/tex]
Part B)
we know that
[tex]KN=LM[/tex] ----> by opposite sides
[tex]KL=NM[/tex] ----> by opposite sides
we have
[tex]KN=10\ units[/tex]
[tex]NM=7\ units[/tex]
therefore
[tex]KL=7\ units[/tex]
[tex]LM=10\ units[/tex]