Respuesta :

Azieq
( x + 5 )^2 = - ( y - 5 )

Answer:

[tex](x+5)^2=12(y-2)[/tex]

Step-by-step explanation:

We are given that focus of parabola at (-5,5).

Equation of directrix y=-1

We have to derive the equation of parabola

We know that the parabola is the set of points (x,y) equally distant from (-5,5) and (x,-1).

Distance formula

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Apply this formula

[tex]\sqrt{(x+5)^2+(y-5)^2}=\sqrt{(x-x)^2+(y+1)^2}[/tex]

Squaring on both sides then we get

[tex](x+5)^2+(y-5)^2=(y+1)^2[/tex]

[tex](x+5)^2+y^2-10y+25=y^2+2y+1[/tex]  ([tex](a-b)^2=a^2+b^2-2ab,(a+b)^2=a^2+b^2+2ab[/tex])

[tex](x+5)^2=y^2+2y+1-y^2+10y-25[/tex]

[tex](x+5)^2=12y-24[/tex]

[tex](x+5)^2=12(y-2)[/tex]

This is required equation of parabola along y- axis.

Q&A Education