Respuesta :
The answer is 120 feet.
The area of the field (A) is:
A = w · l (w - width, l - length)
It is known:
A = 12,000 ft²
l = w - 20
So, let's replace this in the formula for the area of the field:
12,000 = w · (w - 20)
12,000 = w² - 20
⇒ w² - 20w - 12,000 = 0
This is quadratic equation. Based on the quadratic formula:
ax² + bx + c = 0 ⇒ [tex]x= \frac{-b+/- \sqrt{ b^{2}-4ac } }{2a } [/tex]
In the equation w² - 20w - 12,000 = 0, a = 1, b = -20, c = -12000
Thus:
[tex]w= \frac{-(-20)+/- \sqrt{(-20)^{2}-4*1*(-12000) } }{2*1} = \frac{20+/- \sqrt{400+48000} }{2} = \frac{20+/-220}{2} [/tex]
So, width w can be either
[tex]w= \frac{20+220}{2}= \frac{240}{2}=120 [/tex]
or
[tex]w= \frac{20-220}{2}= \frac{-200}{2} =-100[/tex]
Since, the width cannot be a negative number, the width of the field is 120 feet.
The area of the field (A) is:
A = w · l (w - width, l - length)
It is known:
A = 12,000 ft²
l = w - 20
So, let's replace this in the formula for the area of the field:
12,000 = w · (w - 20)
12,000 = w² - 20
⇒ w² - 20w - 12,000 = 0
This is quadratic equation. Based on the quadratic formula:
ax² + bx + c = 0 ⇒ [tex]x= \frac{-b+/- \sqrt{ b^{2}-4ac } }{2a } [/tex]
In the equation w² - 20w - 12,000 = 0, a = 1, b = -20, c = -12000
Thus:
[tex]w= \frac{-(-20)+/- \sqrt{(-20)^{2}-4*1*(-12000) } }{2*1} = \frac{20+/- \sqrt{400+48000} }{2} = \frac{20+/-220}{2} [/tex]
So, width w can be either
[tex]w= \frac{20+220}{2}= \frac{240}{2}=120 [/tex]
or
[tex]w= \frac{20-220}{2}= \frac{-200}{2} =-100[/tex]
Since, the width cannot be a negative number, the width of the field is 120 feet.