Respuesta :
The answer is E.4
The equation is: [tex]n ^{-2}= \frac{1}{16} [/tex]
Since [tex] x^{-a}= \frac{1}{ x^{a} } [/tex], then [tex] n^{-2} = \frac{1}{n^{2} } [/tex]
Therefore, the equation is:
[tex] \frac{1}{ n^{2} } = \frac{1}{16} [/tex]
⇒ [tex]n^{2} = 16[/tex]
[tex]n= \sqrt{16}=4 [/tex]
The equation is: [tex]n ^{-2}= \frac{1}{16} [/tex]
Since [tex] x^{-a}= \frac{1}{ x^{a} } [/tex], then [tex] n^{-2} = \frac{1}{n^{2} } [/tex]
Therefore, the equation is:
[tex] \frac{1}{ n^{2} } = \frac{1}{16} [/tex]
⇒ [tex]n^{2} = 16[/tex]
[tex]n= \sqrt{16}=4 [/tex]
Answer:
Option B and E are correct
n could be 4 and -4
Step-by-step explanation:
Given the following:
[tex]n^{-2} = \frac{1}{16}[/tex]
we know that:
[tex]a^{-n} = \frac{1}{a^n}[/tex]
Then;
[tex]\frac{1}{n^2}=\frac{1}{16}[/tex]
By cross multiply we have;
[tex]16=n^2[/tex]
or
[tex]n^2=16[/tex]
⇒[tex]n = \pm\sqrt{16}[/tex]
Simplify:
[tex]n =\pm 4[/tex]
⇒n = -4 and n = 4
Therefore, n could be 4 and -4