Respuesta :
v is the initial speed and s is the initial height so the equation is
[tex]h(t) = -16t^2+15t+4[/tex]
Set h(t) equal to 0 and solve for t
[tex]-16t^2+15t+4=0 \\a=-16,b=15,c=4 \\x_{1,2}= \frac{-b \pm \sqrt{b^2-4ac}}{2a}= \frac{-15 \pm \sqrt{15^2-4(-16)4}}{2(-16)}=\frac{-15 \pm \sqrt{225+256}}{-32}=\frac{-15 \pm \sqrt{481}}{-32} \\x_1=\frac{-15 + \sqrt{481}}{-32} \approx -0.22 \\x_1=\frac{-15 - \sqrt{481}}{-32} \approx 1.15[/tex]
Time must be positive, so the result is 1.15 seconds.
[tex]h(t) = -16t^2+15t+4[/tex]
Set h(t) equal to 0 and solve for t
[tex]-16t^2+15t+4=0 \\a=-16,b=15,c=4 \\x_{1,2}= \frac{-b \pm \sqrt{b^2-4ac}}{2a}= \frac{-15 \pm \sqrt{15^2-4(-16)4}}{2(-16)}=\frac{-15 \pm \sqrt{225+256}}{-32}=\frac{-15 \pm \sqrt{481}}{-32} \\x_1=\frac{-15 + \sqrt{481}}{-32} \approx -0.22 \\x_1=\frac{-15 - \sqrt{481}}{-32} \approx 1.15[/tex]
Time must be positive, so the result is 1.15 seconds.
For this case we have the following equation:
[tex] H (t) = -16t ^ 2 + vt + s
[/tex]
Where,
t: time
v: initial speed
s: initial height
Substituting values we have:
[tex] H (t) = -16t ^ 2 + 15t + 4
[/tex]
By the time the ball hits the ground we have:
[tex] -16t ^ 2 + 15t + 4 = 0
[/tex]
From here, we clear the value of time:
Using the quadratic equation we have:
[tex] t=\frac{-15+/-\sqrt{15^2-4(-16)(4)}}{2(-16)} [/tex]
Doing the calculations we have:
[tex] t1=-0.217
t2=1.154 [/tex]
Discarding the negative root, we have that the time is:
[tex] t=1.154 [/tex]
Answer:
it takes the ball to hit the floor about:
1.15 seconds