Respuesta :
Answer: Option 'D' is correct.
Step-by-step explanation:
Let the number of wedding invitations be represented by x axis.
Let the cost of wedding invitations be represented by y-axis.
So, At cost of $210, a printer will produce 80 wedding invitations.
At cost of $290, a printer will produce 120 wedding invitations.
So, we have (80,210) and (120,290)
So, our equation of slope will become:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\\\y-210=\frac{290-210}{120-80}(x-80)\\\\y-210=\frac{80}{40}(x-80)\\\\y-210=2(x-80)\\\\y-210=2x-160\\\\y=2x-160+210\\\\y=2x+50[/tex]
We need to find the cost of 60 (= x) invitations:
[tex]y=2x+50\\\\y=2\times 60+50\\\\y=120+50\\\\y=\$170[/tex]
Hence, Option 'D' is correct.
Answer:
The printer charge is $170 to produce 60 invitations.
Step-by-step explanation:
A printer will produce 80 wedding invitations for $210
[tex](x_1,y_1)=(80,210)[/tex]
The price to produce 120 invitations is $290.
[tex](x_2,y_2)=(120,290)[/tex]
We will use two point slope form
Formula : [tex]y- y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
Substitute the values :
[tex]y- 210=\frac{290-210}{120-80}(x-80)[/tex]
[tex]y- 210=2(x-80)[/tex]
[tex]y- 210=2x-160[/tex]
[tex]y- 210=2x-160[/tex]
[tex]y=2x+50[/tex]
Now we are supposed to find the printer charge to produce 60 invitations
Substitute x = 60
[tex]y=2(60)+50[/tex]
[tex]y=170[/tex]
Hence the printer charge is $170 to produce 60 invitations.