Respuesta :
Total number of salads - 8
Number of salads in a menu - 5
We can choose 5 different salads from 8 salads in [tex]C_5^8[/tex] ways.
[tex]C_5^8= \frac{8!}{5!(8-5)!} = \frac{8\times7\times6}{3\times2} =56[/tex]Â
Similar for entrees, side dishes and desserts.
Entrees:Â [tex]C_7^{10}=120[/tex]
Side dishes: [tex]C_4^8=70[/tex]
Desserts: [tex]C_8^{10}=45[/tex]
Total number of possible menus is [tex]56\times120\times70\times45=21,168,000[/tex]
Number of salads in a menu - 5
We can choose 5 different salads from 8 salads in [tex]C_5^8[/tex] ways.
[tex]C_5^8= \frac{8!}{5!(8-5)!} = \frac{8\times7\times6}{3\times2} =56[/tex]Â
Similar for entrees, side dishes and desserts.
Entrees:Â [tex]C_7^{10}=120[/tex]
Side dishes: [tex]C_4^8=70[/tex]
Desserts: [tex]C_8^{10}=45[/tex]
Total number of possible menus is [tex]56\times120\times70\times45=21,168,000[/tex]
Number of menu possible = 8C5 x 10C7 x 8C4 x 10C8 = 56 x 120 x 70 x 45 = 21,168,000