Respuesta :
If tan α = 0
α = tan^(-1) 0
α = k π , k ∈ Z ( any integer ), π = 180°
0 · 180° = 0
1 · 180° = 180°
2 · 180° = 360°
3 · 180° = 540°
Answer:
Angles are: 0°, 180°, 360°, 540°.
α = tan^(-1) 0
α = k π , k ∈ Z ( any integer ), π = 180°
0 · 180° = 0
1 · 180° = 180°
2 · 180° = 360°
3 · 180° = 540°
Answer:
Angles are: 0°, 180°, 360°, 540°.
Answer:
Angles are: 0°, 180°, 360°, 540°
Step-by-step explanation:
we have to tell four angles whose tangent equals 0.
i.e if [tex]\tan\theta=0[/tex]
we have to find 4 values of [tex]\theta[/tex]
[tex]\theta= tan^{-1}0[/tex]
[tex]\theta = n\pi[/tex] where n is integer
Put k=0, 1, 2, 3
n=0, [tex]\theta = 0^{\circ}[/tex]
n=1, [tex]\theta = 180^{\circ}[/tex]
n=2,[tex]\theta = 360^{\circ}[/tex]
n=3, [tex]\theta = 540^{\circ}[/tex]
Angles are: 0°, 180°, 360°, 540°