Respuesta :

The non-algebraic functions are called transcendental functions. This include the logarithmic function. The definition of Logarithmic Function with Base a is as follows:


[tex]For \ x\ \textgreater \ 0, \ a \ \textgreater \ 0, \ and \ a \neq 1 \\ \\ y=log_{a}x \ if \ and \ only \ if \ x=a^{y} \\ \\ Then: \\ \\ f(x)=log_{a}x \\ \\ is \ called \ the \ logarithmic \ function \ with \ base \ a.[/tex]


We know that the equations is:


[tex]y=log(10x)[/tex]


So let's solve each case:


Case 1


[tex]x=\frac{1}{100} \\ \\ y=log(10(\frac{1}{100})) \\ \\ \therefore y=log(\frac{1}{10}) \\ \\ \therefore y=-1 \\ \\ So: \\ \\ \boxed{\ x=\frac{1}{100}} \ matches \ to \ \boxed{y=-1}[/tex]


Case 2


[tex]x=\frac{1}{10} \\ \\ y=log(10(\frac{1}{10})) \\ \\ \therefore y=log(1) \\ \\ \therefore y=0 \\ \\ So: \\ \\ \boxed{\ x=\frac{1}{10}} \ matches \ to \ \boxed{y=0}[/tex]


Case 3


[tex]x=1 \\ \\ y=log(10(1)) \\ \\ \therefore y=log(10) \\ \\ \therefore y=1 \\ \\ So: \\ \\ \boxed{\ x=1} \ matches \ to \ \boxed{y=1}[/tex]


Case 4


[tex]x=10 \\ \\ y=log(10(10)) \\ \\ \therefore y=log(100) \\ \\ \therefore y=2 \\ \\ So: \\ \\ \boxed{\ x=10} \ matches \ to \ \boxed{y=2}[/tex]


Case 5


[tex]x=100 \\ \\ y=log(10(100)) \\ \\ \therefore y=log(1000) \\ \\ \therefore y=3 \\ \\ So: \\ \\ \boxed{x=100} \ matches \ to \ \boxed{y=3}[/tex]

Answer:

1) 1/100 = -2

2) 1/10 = -1

3) 1 = 0

4) 10 = 1

5) 100 = 2

hope this helps! <3

Q&A Education