Respuesta :
[tex]y=a \cos{b\theta}[/tex]
[tex]f(0)=2 \\2=a \cos{(b \times 0)} \\2=a \cos{0} \\2=a \times 1 \\a=2 \\ \\f( \frac{\pi}{4} )=0 \\0=a \cos{(b \times \frac{\pi}{4})} \\\cos{ \frac{b\pi}{4}}=0 \\\frac{b\pi}{4}=\frac{\pi}{2} \\b= 2 \\ \\y=2 \cos{ 2\theta} [/tex]
[tex]f(0)=2 \\2=a \cos{(b \times 0)} \\2=a \cos{0} \\2=a \times 1 \\a=2 \\ \\f( \frac{\pi}{4} )=0 \\0=a \cos{(b \times \frac{\pi}{4})} \\\cos{ \frac{b\pi}{4}}=0 \\\frac{b\pi}{4}=\frac{\pi}{2} \\b= 2 \\ \\y=2 \cos{ 2\theta} [/tex]
Answer:
f(x) = 2 cos 2θ
Step-by-step explanation:
Equation is f(x) = a cos bθ
We have f(0) = 2
a cos (b x 0) = 2
a = 2
So f(x) = 2 cos bθ
We also have [tex]f(\frac{\pi}{4} )=0[/tex]
[tex]2cos(b\times \frac{\pi }{4})=0\\ \\b\times \frac{\pi }{4}=\frac{\pi }{2}\\\\b=2[/tex]
So the equation is f(x) = 2 cos 2θ