Respuesta :
Answer:
Step-by-step explanation:
Given that:
[tex]d = 2t^2[/tex] and [tex]d = 10t - 8[/tex]
If we equate both since they are distances, we have:
[tex]2t^2 = 10t - 8[/tex]
Algebraically, moving the equation to the right side, we get:
[tex]2t^ 2 = 10t -8 \\ \\ 2t^2 -10t +8 =0[/tex]
To factor the equation on the left side:
[tex]2t^2 - 10t + 8 = 0[/tex]
Factor out 2 on the left-hand side:
[tex]2 (t^2 -5t + 4) =0[/tex]
[tex]=2 (t^2 -t-4t + 4)[/tex]
[tex]= 2[t(t-1)-4(t-1)][/tex]
[tex]=2(t-1) (t-4)[/tex]
To determine the time when the two boats have to cover an equal distance:
[tex]2(t -1)(t-4) =0 \\ \\(t-1)(t-4) =0[/tex]
Thus:
[tex]t - 1 = 0 \ or \ t - 4 = 0 \\ \\ t = 1 \ or \ t = 4[/tex]